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ABSTRACT

In this paper, we derive analytical solutions of statistical moments for transient saturated
flow in two-dimensional bounded, randomly heterogeneous porous media. By perturbation
expansions, we first derive partial differential equations governing the zeroth-order head h(®
and the first-order head term A", where orders are in terms of the standard deviation of
the log transmissivity. We then solve h(®) and A" analytically, both of which are expressed
as infinite series. The head perturbation h(}) is then used to derive expressions for auto-
covariance of the hydraulic head and the cross-covariance between the log transmissivity
and head. The expressions for the mean flux and flux covariance tensor are formulated from
the head moments, based on Darcy’s law. Using numerical examples, we demonstrate the
convergence of these solutions. We also examine the accuracy of these first-order solutions
by comparing them with solutions from both Monte Carlos simulations and the numerical
moment-equation method.

INDEX TERMS: 1829 Hydrology: Groundwater Hydrology; 1832 Hydrology: Ground-
water Transport; 1869 Hydrology: Stochastic Processes; 3210 Mathematical Geophysics:
Modeling; 3230 Mathematical Geophysics: Numerical Solutions; KEYWORDS: stochastic
processes, analytical solutions, heterogeneity, head covariance, velocity covariance, uncer-

tainty quantification



1 Introduction

Geological formations are inherently heterogeneous and exhibit a high degree of variability
in medium properties such as hydraulic conductivity and porosity. Medium heterogeneity
has significant impacts on fluid flow and solute transport in the subsurface. Although these
formations are intrinsically deterministic, we usually have incomplete knowledge on their
properties. As a result, it is common to treat the medium properties as stochastic processes
and solve the flow and transport problems in randomly heterogeneous media in a stochastic
framework. In the last two decades, many stochastic theories have been developed to obtain
the statistical moments for fluid flow and solute transport in such heterogeneous media [e.g.,
Freeze, 1975; Gelhar and Azness, 1983; Dagan, 1979, 1982, 1989; Graham and McLaughlin,
1989; Rubin, 1990; Gelhar, 1993; Shvidler, 1993; Cushman and Ginn, 1993; Osnes, 1995,
1998; Guadagnini and Neuman, 1999a.b]. Most of these theories resort to solving the original
or moment equations numerically.

Analytical solutions to the statistical moments of saturated flow are only available for
some special cases such as steady state uniform mean flow in an unbounded domain [Dagan,
1985; Gelhar, 1993; Rubin, 1990; Rubin and Dagan, 1992; Zhang and Neuman, 1992] and
steady state uniform mean flow in a rectangular domain [Osnes, 1995, 1996]. Under the
assumption of steady state uniform mean flow in an infinite domain, Dagan [1985] derived
an analytical solution for the head variogram with an exponential covariance function of the
log hydraulic conductivity. Under similar assumptions, Rubin and Dagan [1992] and Zhang
and Neuman [1992] presented solutions to velocity covariances. Osnes [1995, 1998] derived
analytical solutions to head and velocity moments for steady state uniform mean flow in a
rectangular domain with a separable exponential covariance function of the log transmis-
sivity. To our knowledge, analytical solutions for head and velocity moments for transient
flow are not available in the literature. In this study, we present analytical solutions to head
and velocity covariances for transient flow in a two-dimensional statistically homogeneous
porous medium with a separable exponential covariance function of the log transmissivity.
We assume that the boundary conditions are deterministic and the only source of uncertainty
is due to the variability on transmissivity. It is also assumed that the flow is initially at a

steady state condition and the initial head uncertainty is unknown (to be determined later)



rather than specified in advance.

2 Mathematical Derivation

2.1 Statement of the Problem

We consider transient flow in saturated two-dimensional bounded randomly heterogeneous
porous media governed by the following continuity equation and Darcy’s law

Oh(x,t)

V-ax,t)=S 5 xeQ,t>0 (1)
q(X) t) = _T(X)Vh(xa t) (2)
with boundary and initial conditions

h(X, t) =H, 1 =0, t>0, (3&)

h,(X, t) = HQ, Ty = Ll, t> 0, (3b)

Oh(x,t)/0zy = 0, zo =0, t>0, (3¢)

ah(x, t)/8x2 =0, To = LQ, t>0, (3d)

h(x,t) = Hy(x), x€, t=0, (3e)

where h(x, t) is the hydraulic head, ¢(x, t) is the specific discharge, H; and H, are prescribed
constant heads, Hy(x) is the initial head in the domain 2, T is the transmissivity, S is
storativity, x = (z1, z2) is the horizontal Cartesian coordinates, L; and L, are the lengths of
the flow domain in x; and z, directions, and ¢ is time. Here we assume that H; and H, are
deterministic constants while Hy(x) is specified with uncertainty: Hy(x) = (Ho(x)) + H}(x)
where (H,) and H{(x) are respectively the mean and perturbation. It is also assumed
that S is a deterministic constant whereas 7' is a spatially correlated stationary random
function following a log normal distribution, and we work with the log-transformed variable
Y(x) = In[T'(x)] = (Y) + Y'(x), where (Y) and Y’(x) are the mean and the perturbation
of log transmissivity, respectively. Accordingly, the hydraulic head and flux are also random
functions and can be decomposed as h(x,t) = K9 (x, 1) +hD(x,t)+- -+, a(x,t) = ¢ (x, 1)+
qY(x,t) + - - -, where the order of each term in this series is in terms of the variability of
the log transmissivity. Our aim is to solve for the statistics (mean and covariance) of head

and flux.



2.2 First-order Mean Head and Mean Flux

Upon combining (1) and (2), substituting decompositions of h(x,t), Hy(x), and T(x) =
exp(Y(x)) =~ Tg[l + Y'(x)], where T is the geometric mean of transmissivity, into the
derived equation with boundary and initial conditions (3), and collecting terms at zeroth

order, one obtains the the following equation

0’0 (x, 1) N ?n0(x,t) S ohO(x,1)

27 R =T ot xeQ, t>0 (4)
with boundary and initial conditions
RO(x,t) = H;, 2,=0, t>0, (5a)
RO(x,t) = Hy, a1 =1Ly, t>0, (5b)
onO (x,t)/0xy = 0, Ty =0, t>0, (5¢)
o (x,t)/dxy = 0, xo =Ly, t>0, (5d)
rO(x,0) = (Hy(x)), x€. (5e)

Certainly, the first-order transient mean head depends on the initial mean head. Here we
choose a special case: (Hy(x)) = Hyo+ (Ha— Hio)x1/L1, i.e., assuming a steady state initial
condition with initial gradient of Jy = (H19— Ha)/L1. At time ¢t = 0, the head values at two
constant head boundaries are changed to H; and Hy, respectively. The solution of (4)-(5)

for such a scenario can be expressed as an infinite series (Appendix A):

2 sin(omx T,
(0) _ _§ : ml _(_1\m —GaZt
h X t = L 2 |: Hl() ( ].) HQO) e S
m —T—Goc2 t
+(Hy = (—1)"Hy) (1— = Font)] (6)
where a,, = mw/L;, m = 1,2,---. Each term in this series is a weighted average of the

effect of the constant head boundaries at time ¢ = 0 and ¢ > 0. Utilizing the identities
S sin(kz)/k = (7 —z)/2 for 0 < z < 27 and Yo, (—=1)*"'sin(kz)/k = 2/2 for —7 <
z < m, it can be verified that for t+ = 0 and ¢ = oo, (6) reduces to h(O)(x,0) = Hyg + (Hy —
Hyy) z1/L; and b (x,00) = H, + (Hy — Hy) x1/L;. For any time 0 < t < oo, h(¥(x,t) has
to be evaluated numerically. Since sin(q,,z1) = 0 at two constant head boundaries z; = 0

and z; = L, the value of any truncated finite summation of (6) at these two constant head



boundaries will be zero. To avoid this, we may rewrite (6) in an alternative form:

H,— H 2 & by sin(apry) T o
O) — d2— e Pt S
h (X, t) = H1 =+ L1 T+ L1 an e s . (7)

m=1

where b,, = (Hy9 — Hy) — (—1)™ (Hy — Hj). Similarly, after substituting decompositions of
a(x,t), h(x,t), and Y(x) into (2) and collecting terms at the zeroth order, one has

a9 (x,t) = —TeVh (x, 1), (8)

or, by utilizing (7), one has the following expressions for the flux components:

T

q§0) (x,t) = Jp— — Z by cos(az1)e —ent
¢ (x,) = 0 (9)
where J; = (Hy — Hy)/L, is the final steady state mean hydraulic gradient.

2.3 First-order Head Perturbations

The equation for the first-order term A" reads:

o’nM(x,t) 0 ., O (%) S ohW(x,1)
Ox? + oz; (Y () oz; ) T Te ot

x€eN, t>0 (10)

where summation over repeated index is implied. Boundary and initial conditions corre-

sponding to (10) are

Y (x,t) =0, 21 =0 or x =Ly, t>0, (11a)
ah(l)(x, t)/8x2 = 0, Ty = 0 or X9 = LQ’ t> 0’ (11b)
AV (x,0) = Hy(x) x€Q (11c)

We have to emphasize that the perturbation of the initial head H{(x) depends on the
variability of Y (x) and therefore cannot be arbitarily assigned. By assuming that the flow
system is initially at a steady state condition, the functional form of the unknown initial per-

turbation can be determined later. Equations (10)-(11) can be solved analytically (Appendix



B) and the solution is:

Y (x,1)
1 & 2 g
= 5 Z ay, Sin () cos(ﬁnmg)e’TTG(“mw")t /Q Hj(x') sin(ay,x}) cos(Bnxh)dx’
=0
4J - n'“Ym i m n
+ fl 2—1 In® Smia?n 11;7;08(5 z2) [1 - e_TTG(agnJ’ﬂ%)t] /QY'(X') cos(a 1) cos(Bzy)dx’
n=0
8T . ! / / ' doe!
- bk P (t) 0 SIN( vy 1) €08 (Brxe) [ YV'(X') cos(apx)) cos(ayry) cos(Brxsy)dx
DL,S 4~ 0
(12)
where 5, = nw/Lyy, n =0,1,2,..., a, =1 for n > 0 and a, = 1/2 for n = 0, terms b; and

Pimn(t) are defined in Appendix B. Since Pyyy(0) = 0, it can be verified that A (x,0) =
H'(x). Note that Hj(x) depends only on Y’(x), and so does the head perturbation A (x, ).
By taking the limit of (12) as t — oo, one obtains the steady state solution of the head

perturbation
4J - n-*m i m n
B (x, 00) Hlmd“ a sm% f;gos(ﬁ 72) /Q Y (x') cos(ama! ) cos(Buz)dx’ (13)
n=0

In particular, the initial head perturbation H{(x) can be written as

4Jy .\ Gy Oty SN (0 21 ) €OS (B 22)
D ag, + 57

m=1
n=0

Hy(x) =

/Y’(x') cos(am 1) cos(Bnzy)dx', (14)
Q

which will be used to formulate the (cross-)covariance Cyp, and Cpg, that are required in

solving for transient head covariances.

2.4 Steady State Second Moments of Head

The cross-covariance between the log transmissivity and the steady state hydraulic head can
be obtained by writing (13) in terms of (y,7), multiplying Y’ (x) to the resulted equation,
and taking the mean,
AT} R Uy Oy I (Y1) €08(SBy
Cyn(x,y) = (Y'(x) k) (y,00)) = 612 ((12 1%2 ( yQ)Rmn(x), (15)

m=1
n=0




where Ry, (x) = [, Oy (%, X') cos(aynzh) cos(B,x5)dx’, and Cy (x,x') = (Y'(x) Y'(x')) is the
covariance of the log transmissivity Y. As done by Osnes [1995] and Yubin and Dagan [1988],

we choose Cy as a separable exponential function

o W)
Cy(x,x') = 0y exp _momlJm o ) (16)
At Ao

where 012, is the variance of Y, and A\; and A, are the correlation lengths of Y in z; and
xo directions, respectively. For this particular covariance function, R,,(x) can be found
analytically:
/\1)\20% _ _
R (x = 2 cos(@mry) — e~/ — (=1)melmr—L1)/M
™ =@ nEme ey et =) }
X [2 cos(Bpxa) — e %2/ _ (—1)"6(”_L2)/’\2] (17)

The steady state head covariance can be derived by multiplying 2 (y, 00) to (13), taking

the mean, and substituting (15) into the derived equation,

Chlx.y) = 16J7 i Qg Oy Ol SIN (1) €0S(Bp2) SIN (U, Y1) €0S(Bry Y2) mm (18)
D (02, + B2) (02, + B,) i
n:nllzo
where

| = /lem(x') cos(a ) cos(Byxhy)dx’
Q

_ Moy Lifm, + =g {1+ (S [(—1)me 2% 1)
(2 M+ D@+ L™ " aZ At +1

A
[(%1 + 0n00n,0) Lo + B%TQH [14 (—1)™m)[(=1)re L2/re — 1}] . (19)

and 9;; is the Kronecker delta function.
Equation (18) leads to the steady state head variance

2 (x) 16J?7 i A Qg Ol Oty SIN (U, 1) €08( B T2) SIN (g 1) €OS(Bry 2) mm
o = )
" D? (a2, + B2) (ai, + B2,) mm

m,mi=1
n,n1=0

(20)

Certainly, the expressions for the head covariance and head variance, i.e., (18) and (20), are
much simpler than those of Osnes [1995, (14)-(15)]. Note that the expressions for the cross-
covariance (Y'(x)H|(y)) and auto-covariance Cg,(x,y) can be written similarly as (15) and

(18), simply replacing J; in these equations by the initial hydraulic gradient J.



2.5 Transient Second Moments of Head

The transient cross-covariance Cyp(x;y,7) and Cp(x,t;y,7) can be derived from (12) as

(see Appendix C)

Qp Oy, sin am COS( Op,
CYh (X; Yy, 7—) = D Z yl) (5 y2) Rmn (X) Jmn (T)

a2, + B2
0
T oo
B D8LfS m;I bk Prmn (T)CYm Sin(amyl) COS(BWZD)kan (X) (21)
n=0

16 & oy Oy Oty Q™ SC'
Ch (X’ t? y’ T) - ﬁ Z (CUQ + ﬁQ) (052 + BZ ) Jmn (t) Jm1n1 (T)

m,mi1=1
n,n1=0

_ 32T > ananlama’mlbklpkrmml( ) Qk1m1n1J ( )
92 2 2
DL,S | an, + B
n,n1=0

_ 32T = ananlam&mlbkpkmn(t)SCkan J, (1)
—_— miny ¥ mini
D2L,S m,m1,k=1 aznl + Bﬁl o

n,n1=0

o0

+ DQLQC;SQ Z Gy O iy Uiy Prn () Prymyny (7)SC QL™ (22)
1

m,mi,k,k1=1
n,n1=0

where
SC = sin(amy1) cos(Bnys2) sin(ay,, 1) cos(fn, x2), (23)
T (8) = |1+ (Jo = Jy)em & (ehrsr] (24)
and all other terms are given in Appendix C. By taking the limit as ¢ — oo, (21) and (22)
reduce to (15) and (18).

2.6 Second Moments of Flux
The first-order flux can be written as
qV(x,t) = —TeVh (x,1) + Y'(x)q (x, 1), (25)

or in the component form:

ohM (x,t)

G Y X0, =12 (26)

qZ(l) (X7 t) = _TG



Multiplying Y’(y) on (26) and taking the mean yield

9Cyn(y;x,1)

o, + ¢ (x, 1) Oy (%, ¥). (27)

Ove(y;%,8) = (Y'(y)a" (x,1)) = —T6

More specifically, (27) can be expanded as

4T N an02, c08(un 1) cos(Brta)
. _ (0) G npy, m1 nt2
CY(]I (yaxa t) - ql (Xa t)CY(X, y) - D mz_l Of?n + ,B% Rmn(Y)Jmn(t)
n:_O
8T ~ 2
+ by, P (t) cos(aun 1) cos(Bnxe) Rmn () (28)
DL,S —
n=0
and
. AT o= U B sin(a, 1) sin(8,x2)
CY(D (Y7Xa t) = D Zl O‘?n T ﬁ% Rmn(Y)Jmn(t)
=0
8T2 : :
— bk Qi B Prernn (t) sin (i1 ) sin(Bn22) Rgman (¥) (29)
DLIS m,k=1

n=0

The flux covariance g;;(x,t;y,7) = (q-(l) (x,1) q](-l) (y,7)) can be derived from (26)

9Cyn(y;x, t)

w +¢,” (%, 1) ¢ (v, 7) Oy (x,¥), 4,/ = 1,2, (30)
v

—Ta g™ (y,7)

J

a;i(x,ty,7) = Tg
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which can be elaborated as

qu(x,t;y,7)

16T62; i QpQp, O m lemmlCC

R A [ C A DA

m,mi=1
n,n1=0
3 0 2 2
32TG U/na'n,10fmam1bk1Pk1m1ﬂ1( ) lemlnlj ( )
D?L,S o? 2
1 myma k1 =1 m + Bn
n,n1=0
o0
32T ananlamamlkakmn() C 4
D2L S +ﬂ2 lenl ml’nl(T)
1 mymi,k=1 m1 n1
n,n1=0

oo

6474 it
D2_[/2G,S’2 Z a/nan1 amam1 bk)bklpkmn (t) Pklml ni (T)CC Qi;nnl '
1

m,ma1,k,k1=1

n,n1=0
4TGCI§O)(}’,T) >N 402, coS(m 1) c08(Bn2)
- Runn(¥) Jrn (¢
D mZ R () (1)
8TC2¥CI1 Y7 =
P mn m n R mn
DL,S mgl mn () 0, €08(0tm 1) €08(Bn2) R (¥)
n=0
4TGq1 >N 4,02, cos(Qmy1) c08(Bnye)
Zl a2 + B2 Ry (%) T (T)
2 00
STGl;hL < Z bk Promn (T) 02, €08 (1) €08 (BrY2) R (X)

0

0t (x, 1) " (y, ) y(x,y) (31)



qi2(x,t;y,7)

and

g(x,ty,7) =

where

11

16T2 N Gy, o2, B,QMm SO
- 2G Z : D) 1Pnom D) T (8) Tnyny (T)
D* 2 (@ + ok, + B
n,n1=0
32T63¥ f: anan1am/6na72nlbklpk1m1n1( ) lemlnlj ( )
2 2 2
D L15' e =1 (07 =+ ﬁn
n,n1=0
3272 2\ Upln, 02, Bbg Prmn (1) SC
D2LGS Z Zuﬁ k2,C v anTZIJmlnl(T)
1 m,m1,k=1 Qmy + ﬁru
n,n1=0
6474 = mn
- DZLQGSQ Z ananlamafnl ﬁnbkbkl Pkmn (t)Pklmlnl (T)SC QI]Z;,ml '
™ ek k=1
n,n1=0
ATq ¢V (x, 1) i G Ot B SIN (Y1) SN (Bry2)
R (%) T (T)
2 2
872 1" (x,1) . .
—DPLs Z bk Prrmn (T) Qi B Sin (i) sin(Brya) Remn (X)) (32)
%
16TG - anamamamUBnIBQOlmSS
Jmn(t)‘]mlm(T)
mmzll aZ +572L)( m1+ﬂ7%1)
n,n1=0
32Tg i ananlOémamlﬂnﬁnlbklpklmlnl( ) lemlnIJ ( )
2 2 2
D LlS k=1 C\fm + ﬂn
n,n1=0
3278 O~ nln, OO, BBy bk Prmn (1) SS
s ot e Tl 033 Q8 T ()
! m,my,k=1 aml + ﬁnl
n,n1=0
64Té ad kiming
D225 Z UGy Oy O, Brbetan bibiy Prmmn () Proymyny (T)SS Qi
1 m,mi,k,k1=1
n,n1=0
(33)

SC = sin(apyr) sin(B,yz) cos(am, 1) cos(fn, T2),
CC = cos(amy1) cos(Bny2) cos(Qm,x1) cos(Bn, x2),
SS = sin(au,y1) sin(Bry2) sin(Qy, 1) sin( By, x2). (34)
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The expression for go; has been omitted, because of the fact ¢o1(x,t;y,7) = qi2(y, 75 %, 1).
Since ¢;(x,00) = TgJ; and Jy,(00) = Jp, the steady state flux covariance can be written

from (31)-(33) as

16T2J2 & GO 02 Q2 Q1™
Q11(X; y) = DC; 1 Z (a2 +1ﬁ2rr)z(an;1 —ZmﬂQ ) COS(Ome1) COS(/BnyQ) cos(amlxl) COS(ﬁmﬂ?Q)
mymi=1 m n mi n1

n,n1=0

AT2? &
_ lG)’Jl > a;; imﬂﬁ [Ryn (%) cos(amy1) cos(Bnya) + Rimn(¥) cos(am1) cos(Baz2)]

n=0

+ TgJ: Cy(x,y) (35)

272 2
16T¢J; Z ananlamamlﬁanﬁl

q2(xy) = D2 S (02, + B2) (02, + B2.) sin(aumy1) sin(Bny2) cos(Qum, T1) €0S(Bn, 2)
n,n1=0
ATET? N G0t B sin (s ) sin(Bys)
n=0

and

mini

Q22(X; Y) = D2 Z (a21+ﬂ2)za2 _;_52 )

sin(amy1) sin(Bryz) sin(ayy, 1) sin(Bp, 2)

mymi=1
n,n1=0

(37)

The velocity covariance can be readily formulated from a simple relationship u;;(x,¢;y,7) =
gij(x,t;y,7)/6(x)/9d(y), where ¢ is the porosity of the porous media and is considered as a

deterministic quantity due to its relatively small variability.

3 Numerical Examples

In this section, we try to examine the convergence and the accuracy of the analytical solutions
for the first-order transient mean flow quantities and related (cross-)covariances. We consider
a two-dimensional rectangular domain in a saturated heterogeneous porous medium. The
flow domain for our base case is a square of a size L; = Ly = 10 (in any consistent length
unit), uniformly discretized into 40 x 40 square elements. The non-flow conditions are

prescribed at two lateral boundaries and constant heads are specified on the left and right
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boundaries. Initially, the flow is at a steady state condition with constant heads Hqyy = 9.5
on the left boundary and Hyy = 9.0 on the right boundary. At time ¢ = 0, the constant
heads on the left and right boundaries are suddenly changed to H; = 11.0 and Hy = 10.0,
respectively. The storativity is a deterministic constant S = 0.005. The mean of the log
transmissivity is given as (Y) = 0.0 (i.e., the geometric mean of transmissivity Tg = 1.0).
The variance and the correlation lengths of the log transmissivity field for our base case are
0% = 1.0 and A\; = X = 1.0. Unless specifically mentioned, in all examples we will show

results only along the profile o = Ly/2 = 5.

3.1 Convergence of Analytical Solutions

An important aspect of analytical solutions presented as infinity series is how fast the solu-
tions converge to their true solutions, or in other words, how many terms should be included
in truncating the series so that the approximations to these solutions will have a given accu-
racy. Many factors, including the aspect ratio of the flow domain and the correlation lengths
of the log transmissivity field, may have impacts on the rate of convergence. To investigate
this, in addition to the base case, we design two more cases. For each case, we truncate
each individual summation (each index) in the analytical solutions of the mean head and
and the head variance up to N terms, where N = 2, 3, 5, 6, and 10. Figure 1 illustrates
the computed transient mean head at four times ¢ = 0.0, 0.01, 0.05, and 0.4, using N = 2,
3, and 5. The figure shows that at time ¢ = 0.4, the flow has reached the final steady state
condition. From the figure we see that keeping the first two terms in the summation of
RO (x) is very accurate, except for at early time ¢t = 0.01, in which keeping the first-three
terms is accurate enough. In all examples presented in this study, approximating the mean
head with the first three terms in (7) is sufficiently accurate, and adding more terms does not
significantly improve the accuracy. Mathematical analysis of the expression for h(%(x), i.e.,
(7), reveals that for an extremely small ¢, a very large number of terms is needed. However,
in general, the series in (7) converges very fast, and therefore, we will focus our discussion
on the head variance. Figure 2 depicts the head variance as a function of z; along the profile
x9 = Lo/2 for different values of N. The figure clearly demonstrates that the rate of con-
vergence depends on the flow condition. When the flow is close to a steady state condition,

for instance at t = 0.4, approximating the head variance using N = 3 (i.e, 729 terms in a
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six-fold summation) will be very accurate. While at early times, due to the sudden change
on constant head boundary at ¢ = 0, more terms are needed to approximating the head
variance.

To examine the possible effect of the domain geometry (the ratio L;/Ls) on the conver-
gence of the solution, we change the width of the domain to Ly = 2 while keeping everything
else the same as in the base case. Numerical experiments with different numbers of terms
included in the truncated summations are illustrated in Figure 3, which depicts the mean
head and head variance along the profile o = L,/2 = 1.0. The figure, again, shows that
the analytical solution converges faster when the flow is at or near a steady state condition.
In addition, comparing Figures 2 and 3, one finds that the head variance increases as the
domain becomes narrower in the transverse direction.

In the third example, we increase the correlation lengths of the log transmissivity to
A1 = Ay = 5. The results, as shown in Figure 4, indicates that an increase of the correlation
length enhances the rate of convergence of the analytical solution (compared to Fig. 2).
Furthermore, it is seen that increases of the correlation lengths will cause an increase on the
head variability. However, unlike the case with an unbounded domain with an exponential

covariance function, the head variance here is not proportional to A;As.

3.2 Accuracy of Analytical Solutions

We conduct Monte Carlo (MC) simulations to verify the accuracy of the first-order analytical
solutions for transient head and its related (cross-)covariances. First, we generate 5,000 two-
dimensional unconditional realizations of the log transmissivity with the separable covariance
function as given in (16), using the random field generator based on the Karhunen-Loéve
decomposition, as described in Zhang and Lu [2004]. The quality of these realizations has
been examined by comparing their sample statistics (mean, variance, and correlation lengths)
of these realizations with the specified mean and covariance functions. The comparisons show
that the generated random fields reproduce the specified mean and covariance functions very
well.

For each realization, we solve the steady-state flow equation with the initial constant
head Hyp = 9.5 and Hyy = 9.0 on the left and the right boundaries, using the finite-element
heat- and mass-transfer code (FEHM) of Zyvoloski et al. [1997]. This steady state head
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field is then taken as the initial head Hy(x) for the following transient simulation. Using
the same realization, we run the FEHM code again for a transient simulation with the new
constant heads H; = 11.0 and Hy = 10.0 on the left and right boundaries and record the
head at the following times: ¢ = 0, 0.01, 0.05, and 0.4. This procedure is repeated for all
realizations, and the sample statistics of the transient flow fields, i.e., the mean predictions
of the head and the flux as well as their (cross-)covariances at these times, are computed
from realizations. These flow statistics are considered the “true” solutions that are used to
evaluate the accuracy of the first-order analytical solutions.

Figure 5a compares the transient mean head (h(x,t)) computed from Monte Carlo sim-
ulations (MC, solid curves) and that from the first-order (in 02) analytical solution with
N = 10 (ANA, dashed curves) at various times along the profile o = Lo/2. It seems
from the figure that the mean head computed from the analytical solution is very close to
the Monte Carlo results, especially at or near steady state conditions. Also compared in
the figure is the first-order mean head computed from the moment-equation method (ME,
dash-dotted curves) [Zhang and Lu, 2002]. Figure 5b compares the transient head variance
obtained from the MC simulations, the first-order analytical solution, and the first-order
ME approach at various times. It is expected that the first-order analytical solutions should
be identical to the results from the first-order ME method, in the limit that the number
of terms, NV, in the truncated finite series of the analytical solutions approaches to infinity.
Furthermore, both first-order results will deviate slightly from the Monte Carlo results, and
such deviations will increase with the increase of the variability of the log transmissivity.
Figure 5 clearly shows that the analytical solutions are adequately accurate at o2 = 1.0,
especially when the flow is at or near a steady state condition.

It is interesting to see from Figure 5b that the head variance along the profile xo = Ly/2
at both the initial and final steady state conditions is symmetric (larger head variance at the
final steady state condition due to a larger hydraulic gradient), while at any unsteady stage
the curve is asymmetric. For example, the head variance along the profile has two peaks
at time ¢ = 0.01. This may be due to the variable hydraulic gradient during the unsteady
stage. Comparison of Figure 5a and Figure 5b indicates that the larger peak on the variance
curve corresponds to a larger hydraulic gradient on the mean head curve. Furthermore,

because the change of the head variance from the initial head variance is due to the change
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of constant head boundaries at ¢ = 0, the variance change starts from two constant head
boundaries and propagates into the entire flow domain. As a result, at a time before the
effect of the boundary change reaches the entire domain, the head variance in some region
remains the same as the initial head variance o (x) (e.g., a trough at ¢ = 0.01 in Fig. 5b).

Figure 6a illustrates the cross-covariance Cyp(x;x,t) as a function of x; obtained from
Monte Carlo simulations (solid curves) and analytical solutions (dashed curves) at four
elapsed times. It is evident that analytical results are in good agreement with Monte Carlo
results. Note that, at early time, Cyp(x;x,t) is much larger than its values at the steady
state condition. This implies that at early time, the effect of the transmissivity is relatively
local, i.e., the transmissivity at point x has a significant effect on the mean head at the
same point x. Such an effect reduces significantly at later times because the transmissivity
elsewhere in the domain also have impact on the mean head at point x.

Figure 6b depicts the cross-covariance between the log transmissivity at the center of
domain (L;/2,Ls/2) and the head h(x,t) along the profile zo = Ly/2, as a function of z;.
Again, analytical results are in good agreement with Monte Carlo results. It is interesting
to note that, at both the initial and the final steady state conditions, Cy}, along this profile
is antisymmetric and Cy, = 0 for Y and h(x,t) at the center of the domain, due to the
particular boundary conditions in our problem. However, at any transient state, Cy;, does
not shown any such kind of symmetry.

Figure 7 shows the covariance of head at (x1, Ly/2,t) and (z1, Lo/2,7) as a function of z;
and 7 at two different times ¢ = 0.00 and ¢ = 0.05, where solid curves stand for the results
from Monte Carlo simulations and dashed curves from analytical solutions.

Comparison of the mean longitudinal flux obtained from the MC simulations, the analyt-
ical solution, and the ME method are illustrated in Figure 8, and similar comparisons for the
flux variance are depicted in Figure 9, where the plots for a later time ¢ = 0.4 are enlarged
in inserts for a detail view. Clearly, Figures 8-9 once again demonstrate the accuracy of
the analytical solutions. In addition, the transient flux variance could be significantly larger

than the steady state flux variance.
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3.3 Summary and Discussion

In this study, we derive analytical solutions of statistical moments (mean and covariance
of both the hydraulic head and the flux) for transient saturated flow in two-dimensional
bounded, randomly heterogeneous porous media, assuming that the flow is initially at a
steady state condition. The initial steady state uncertainty on the head is determined rather
than arbitrarily prescribed, under the assumption that the variability of the log hydraulic
conductivity is the only source of uncertainty.

By perturbation expansions, we first derive partial differential equations governing the
zeroth-order head h(®) and the first-order head term h(Y), where orders are in terms of oy, the
standard deviation of the log transmissivity. We then solve () and A" analytically, both
of which are expressed as infinite series. The head perturbation h(!) is then used to derive
expressions for auto-covariance of the hydraulic head and the cross-covariance between the
log transmissivity and the head. Once the head moments are obtained, the expressions for
the mean flux and flux covariance tensor are formulated, based on Darcy’s law. The velocity
covariance tensor could be computed readily from the flux covariance for a deterministic
porosity.

We conducted numerical experiments to evaluate the convergence and the accuracy of the
first-order analytical solutions. It has been shown that the rate of convergence depends on the
flow condition, the aspect ratio of the flow domain (L;/Ls), and the correlation lengths of the
transmissivity. When the flow is at or near a steady state, the analytical solutions converge
very fast, and for unsteady flow, more terms in the truncated finite series are required to
approximate statistical moments. In addition, a large aspect ratio enhances the rate of
convergence. Furthermore, large correlation lengths will also speed up the convergence.
Finally, it seems that the solutions for the mean quantities converge faster do the solutions
for the second moments.

We also examined the accuracy of these first-order analytical solutions by comparing them
with solutions from both Monte Carlo simulations and the moment-equation method. The
numerical experiments clearly show that the first-order analytical solutions are adequately

accurate at least for o2 = 1.0.
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Appendix A: Zeroth-order Mean Head 1% (x, 1)

Here we briefly outline the procedure for solving the following equation for the zeroth-

order mean head h(®(x, 1),

0?h0) (x,t) N ?hO(x,t) iah(o) (x,1)
0x? Oz Ty Ot

(A1)

with boundary conditions and initial conditions, as shown in (5a)-(5e). Under the given

boundary conditions, by using an integral transformation [Ozisik, 1989]:

h* (O!m, 6717 t) = /QK(O‘ma xl) K(/B'm '7;2) h(O) (Xa t) an (A2)

K(ap, ) = \/Lzlsin(ozmxl), (A3)

\/LZQCOS(BW’EQ) if n # 0,
K (Bn, x2) = (A4)

/1 e
i ifn=0,

and o, = mn/Lyym = 1,2,--+, B, = nw/Ly, n = 0,1,---, (Al) is transformed to a first-

where kernels

and

order ordinary differential equation,

A Bust) T8 (02 4 B2) W (s B t) = Ay, Bt (45)

with the initial condition

F*(m, Ba) = / K (ams 1) K (B 22) (Ho (x)) dx (A6)

which is the transformation of the initial condition (5e). The term on the right-hand side of

(A5) is related to boundary conditions of the original zeroth-order equation,

TG dK(Otm, .Tl) /L2
Alam, Bn,t) = — |——— K (B, x2)H1d
(& B ) S dml z1=0 Y z2=0 (ﬂ $2) 12
K L2
| Ko z) K (B, 2) o day
d.’,C]_ xr1=L1 z2=0
0 if n # 0,

&\ [* 20, (H — (-1)™Hy) ifn=0,
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Equation (A5) with the initial condition (A6) can be solved easily,

t
h* (Qms By t) = F*(qtm, Br) + / e SO tBY Ay, B, )t (A8)
t'=0

and the solution for A (x,t) can be derived from back-transformation of h*(cy, B, 1),

BO,t) = 305 e F ORI K (a0, 21) K (Bay 2)h (s Bus 1)
m=1 n=0
= Y e O Ky, 21) K (B, 22) / K (0, @) K (B, ) (Ho(x')) dx’
m=1 n=0 Q
2 sin(a, 1) m _Tg o,
o (= () Hy) (1— e~ Feit). (A9)

3
I

Assuming (Hy(x)) = Hig + (Ha — Hig) x1/L1, (A9) reduces to

2 o . -
KD = g3 2O 21) (41— (1) Hig) =¥

+(H, — (—1)™H,) (1 - e*%‘;a%t)] . (A10)

For boundary conditions other than those shown in (5a)-(5d), transformations similar to

(A2) can be used upon replacing with appropriate kernels [ézi§ik, 1989].
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Appendix B: Head Perturbation 7/(x,t)

The equation for the head perturbation h'(x,?) reads as

92pM (X, t) 0 , Oh0) (X, t) S ort) (X, t)
T g (Ve ) = P By

with boundary conditions and initial conditions, as shown in (11). Similarly, using an integral

transformation [Ozisik, 1989]:

W (om, B, 1) = /Q K (o, 1) K (B, w2) B (x, 1) d x, (B2)

where kernels are given in (A3)-(A4), (B1) is transformed to a first-order ordinary differential

equation,

m: Pust) 4 T (42, 1 62) W (0 B t) = A, 1), (B3)

with the initial condition F*(aum, 8,) = [ K(am, 1)K (Bn, x2) Hj(x)dx. The solution of
(B3) can be formally expressed as:

¢ T 2 24/
B (s B, t) = F*(tm, Bn) + / e s @mtB A(qyn, By, t')dt! (B4)
t'=0

and the solution for A(Y)(x,t) can be derived from the back-transformation of A*(cum, B, t):
= Z ZG_TG om +6a) " K (tm, 1) K (B, 22) B (Ctms B 1) (B5)
m=1 n=0

The term on the right-hand side of (B3) is related to boundary conditions for A() and

the source term, i.e., the second term on the left-hand side of (B1),

(0)
A ) = 2 [ Kl K(pnozn) - (Vo025 ax - (o)

Substituting h(®)(x,t) into (B6) and carrying out intergation yields

2J1TGam/ L , N

Alam, Bp,t) = ——— | Y'(X') cos(ax) cos(fBnrs)dx

(s B t) = =700 | (o) co(evuat) cos(Bras)
4Tqoy,

= Tg 2
———F—= ) b 6_Takt/Y' x') cos(a, ) cos(agxh) cos(B,xh)dx’ B7
leLleS; g Q (x) cos(amay) cos(axay) cos(Burs) (B7)
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for n # 0 and

V20, Taam,
Alam, bo, t) = \/Lll—iLGQS

2\/§Tgaf > Ta 2
——— "Ny e_Takt/ Y'(x') cos(az!) cos(agx’ )dx', B8
P S el [ ) oot cosonal (B)

for n = 0. Substituting A(a,, 5y, t) and F* (o, B,) into (B4) and combining the latter with
(B5), one obtains the solution for h(V)(x, t):

/ Y'(x') cos(ama] )dx’
Q

Y (x, 1)
= LS o sin(ame) cos(uza)e TR [ B sin(anzh) cos(Buh)
= 7 2_ ansin(ana) cos(Bazz)e o x') sin(amx]) cos(Bnxs)dx
oy
4J) n U Oy SiD (1) €08 (B 22) [ _Ta2 g2
*J1 nYm m n 1_ £ (am+5n)ti| Y/ ! m ! - ! d !
+ D mX_:l o & e g (x") cos(ax)) cos(Bnry)dx
n=0
8T
- @bk Pryn () 0t sin (i, 1) €08(Bn22) / Y'(x') cos(amx]) cos(agz]) cos(Bnzs)dx’
DLlS m,k=1 Q2
n=0
(B9)
where D = LyLy, a, =1 for n > 1 and a,, = 1/2 for n = 0, and
P % TR YL IR OY .
ST PO it} ol + B,
Pin(t) = (B10)
te= Fah ot if a2 = o2, + B2

The steady state solution of the head perturbation can be derived by taking the limit of (B9)

as t — oo,
4J - n+-m i m n
R (x,00) = ﬁmda a Sm(ozo,% f;gos(ﬂ z2) /QYI(XI) cos(am ) cos(B,xh)dx’
n=0

(B11)
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Appendix C: Head Covariance

Multiplying A!)(y, 7) to (B9) and taking ensemble mean yields an expression for head

covariance

Ch(xa t; Y, T) = <h(1) (X’ t) h(l) (Y7 T))

4 o0
= 55 Y ausin(anan) cos(uza)e F RN [ (RO, 7)) sl cos(Brh) i
=0
+61 Z_l (179 0" SlIl(OZO;n 11;7;;05(5 1‘2) [1 _ e*TTG(Oé?n+ﬂ,2z)t:| /QCYh(XI; y,T) COS(Oém.’Ell) COS(,Bn.’EIQ)dXI
n=0
8TG > . !, ! ! ! !
— Z bk Prmn (t) 0t 81 (1) €08(Br2) [ Cyn(X'5y, T) cos(amy) cos(agy) cos(B,75)dx
DLs ==, Q
n=0
(C1)
Here the cross-covariance between head at space-time (y,7) and initial head at location x,
(H}(x)hM (y, 7)), can be derived by rewriting (B9) in terms of (y,7), multiplying H}(x') to
the derived equation, and taking the mean,
Cron(x;y,7) = (Ho(x) hV(y, 7))
4 & . —Ta (a2 +82)r .
=5 Z O, SIN (Y1) COS(Bpyp)e™ S @ntom) /QCHO(XI,X) sin(ay, ) cos(B,xh)dx’
=0
4] - nm i m n :
+fl Z_l fn® Smg;; ilggos(ﬁ y2) [1 - e_%c"(a%ﬂrﬂi)r} /Q Cy 1, (X', x) cos(ama?) cos(Bnxy)dx’
=0
8T¢ - . ' ' ! ! !
“DI.S bk Py (T) 0t sin (1) €08(Bry2) | Cy m, (X', %) cos(amz)) cos(agxy) cos(Byry)dx
1 m,k=1 Q
n=0

(C2)

As mentioned early, we assume that the flow is initially at a steady state and the pertur-
bation of the initial head H/(x) is determined from the steady state condition. Therefore,
Cyn,(x',x) and Cg,(x',x) can be obtained by replacing J; in (15) and (18) by Jy, the initial

hydraulic gradient. Substituting Cypy, and Cpy, into (C2) and carrying out integrations, one
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has

Cuon(x;y,7) = (Ho(x) B (y, 7))
i 16J0 i Qi Qg Ol Oy Qm?m SC
D2 (a4 B7)(0F,, + B7,)

m,mi1=1
n,n1=0

32J0T¢ = Gnln, b Premn (T) im0, QT SC (C3)
D21y S (i, +57,)

m,mi,k=1
n,n1=0

Tn (7)

where

SC = sin(amy1) cos(Bnye) sin(aum, 1) cos(Bn, x2), (C4)

Toun(7) = [Jl 4 (Jo = Jy)e §e m+ﬁ%>f] , (C5)

Rpni(x) = /Q Cy (%, X') cos(am, 2, ) cos( B, )

)\1/\20'2 —z m1 (T1—
= e DR D) [2eos(amm) = e - ()T
mi n1

[2 c08(B, ) — e~ T2/ _ (_1)n1€(z2 Ly /Az} (C6)

— =/Rm1m(x) cos (1) cos(Brxe)dx

Q

/\1/\20)2/ /\1 —
— L i = -1 m+mi -1 m Li/M\ -1
@+ DR+ [0t g (T (FneR R — )
Ag
|:L2(5nn1 -+ 5710577,10) m (1 +( ]_)TH—VLI) ((—1)n6_L2/)\2 — 1):| (C?)

fn = / Rinin, (%) cos(agxr) cos(amxr) cos(Bnaa)dx

Q

A1 dpo?
= s [Ll (5m1,m+k + 5m,m1+k + 5k,m+m1)

2(af, AT+ 1D(Br A3 +1)
+ A1 (777;19 + U;k)) (1 + (—1)m+m1) ((_1)mefL1/)\1 B 1) }

[L2(5nn1 + 5n05n10) ﬁ (1 =+ ( 1)n+n1) ((—1)"6_L2/’\2 — 1):| (08)

and 77, = [(am — k)T + 17" 1y = [(am + ) ?A7 + 117
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Similarly, the cross-covariance Cy,(X;y,7) = (Y'(x) h)(y, 7)) can be derived as

Cyn(xsy,7) = Ry (%) S (T)

Z U Oy SID (Y1) €0S(Bnyo)
D aZ + 32

o0

bk Pemn (T) 0t SN (1) €08(Bny2) Rigmn (X) (C9)

o||

where

Rirn (%) :/Cy(x',x) cos(a,z7) cos(ayx’) cos(B,y)dx’
Q

/\1/\20’%

= 2Ee 1D {2n}, cos[(aum + ak)z1] + 21, cos|(Ctm — o)1)
n"2

_ (n;k + n;lk) [e—:m/)q + (—1)m6($1_L1)/)‘1]}
X [2co8(Byw2) — €77/ — (1) ¢TI A (C10)

After substituting Cpgp(x;y,7) and Cyp(x;y,7) into (Cl) and carrying out integrations

gives
16 o= anln, OmOm, QrimSc
C t; = — ! ! Jn () Jmyn
h(X, 7Y7T) D2 m; . (a2 + 62)( +ﬁ%1) ( ) 1 1(7-)
n,n1=0
. 32TG o anaznlamamlbklpklmln1( ) lemlnlj ( )
D2L18 Ol?n + ﬁ%
m,mi,k1=1
n,n1=0
32T 2 A, O, b P (1) SC i
N 2 2 2 anﬂu Jrmana (T)
D L15’ S —— ozml + Bnl
V’L,nl’:()
64T(2; o kima
+ T 25 > nln, Con0m, bibky Pinn (£) Prymyn, () SC QELMTCIL)

mymi,k,k1=1
n,n1=0
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where

b / Rin () €080ty 1) €08 (g 1) €08( By 2)dx
Q

)\1A20'2
= W%_i_yl) [Llnr—;k (5m—|—k,m1—|—lc1 + 5k1,m+k—|—m1 + 5m1,m+k+k1)

+L177;lk (6k’m+m1+k1 + 6m’k+m1+k1 + 5m+m1,k+lc1 + 6m+k1,m1+k)

1 (e ) (i + i) (1 (Z1)™F) (1)t ta 1) |
Ao

|:L2(5nn1 + 6n06n10) —+ W (]_ + (_1)n+n1) ((_1)71167L2//\2 _ 1):|
ny’'2

(C12)

In particular, letting ¢ = oo and 7 = oo, we obtain the steady state head variance

Cu(xsy) =

16J12 i a'fla’ma/male%;,‘nl SC
D2 (o, + B2) (o, + B2)

m,mi=1
n,n1=0

(C13)
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Figure Captions

Figure 1 Transient mean head computed using different numbers of terms, N, in truncat-

ing infinite series in (7): the base case.

Figure 2 Transient head variance computed using different numbers of terms, NV, in trun-

cating infinite series in (22): the base case.

Figure 3 Transient head variance computed using different numbers of terms in truncating

infinite series in (22): Ly = 2.0.

Figure 4 Transient head variance computed using different numbers of terms in truncating
infinite series in (22): A\ = \g = 2.0.

Figure 5 Comparisons of (a) the transient mean head and (b) the transient head vari-
ance computed from Monte Carlo simulations (solid curves), the first-order analytical
solution (dashed curves), and the first-order moment-equation method (dash-dotted

curves).

Figure 6 The transient cross-covariance (a) between the log transmissivity Y (z, Lo/2) and
the hydraulic head h(x1, Ly/2,t), and (b) between the log transmissivity Y (L;/2, Ly/2)
and the hydraulic head h(zy, L2/2,t).

Figure 7 The transient head covariance between head h(x,t) and h(x,7) as a function of

x1 and time 7 along x5 = Lo/2 for (a) ¢t = 0.0, and (b) ¢ = 0.05.

Figure 8 Comparisons of the transient mean longitudinal flux computed from Monte Carlo
simulations (solid curves), the first-order analytical solution (dashed curves), and the

first-order moment-equation method (dash-dotted curves).

Figure 9 Comparisons of (a) the longitudinal flux variance and (b) the transverse flux vari-
ance computed from Monte Carlo simulations (solid curves), the first-order analytical
solution (dashed curves), and the first-order moment-equation method (dash-dotted

curves).
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